কোনো রেখাংশকে নির্দিষ্ট অনুপাতে বিভক্তকারী বিন্দুর স্থানাঙ্ক

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ১ম পত্র | | NCTB BOOK

কোনো রেখাংশকে নির্দিষ্ট অনুপাতে বিভক্তকারী বিন্দুর স্থানাঙ্ক নির্ণয়ের জন্য একটি বিশেষ সূত্র ব্যবহার করা হয়। যদি দুটি বিন্দু \( A(x_1, y_1) \) এবং \( B(x_2, y_2) \) হয় এবং \( A \) এবং \( B \)-এর মধ্যে রেখাংশকে \( m : n \) অনুপাতে বিভক্তকারী বিন্দুটি \( P(x, y) \) হয়, তবে \( P \)-এর স্থানাঙ্ক নির্ণয়ের সূত্র হলো:

\[
x = \frac{mx_2 + nx_1}{m + n}
\]
\[
y = \frac{my_2 + ny_1}{m + n}
\]

এখানে,

  • \( m \): প্রথম বিন্দু \( A \) থেকে দূরত্বের অনুপাত
  • \( n \): দ্বিতীয় বিন্দু \( B \) থেকে দূরত্বের অনুপাত

উদাহরণ

ধরুন, \( A \) বিন্দুর স্থানাঙ্ক \( (2, 3) \) এবং \( B \) বিন্দুর স্থানাঙ্ক \( (8, 7) \), এবং \( A \) এবং \( B \)-এর মধ্যকার রেখাংশকে \( 2 : 3 \) অনুপাতে বিভক্তকারী বিন্দু \( P \)-এর স্থানাঙ্ক নির্ণয় করতে চাই।

এক্ষেত্রে,

  • \( x_1 = 2 \), \( y_1 = 3 \)
  • \( x_2 = 8 \), \( y_2 = 7 \)
  • \( m = 2 \), \( n = 3 \)

এখন, \( P(x, y) \)-এর স্থানাঙ্ক নির্ণয় করা যাক:

\[
x = \frac{(2 \times 8) + (3 \times 2)}{2 + 3} = \frac{16 + 6}{5} = \frac{22}{5} = 4.4
\]
\[
y = \frac{(2 \times 7) + (3 \times 3)}{2 + 3} = \frac{14 + 9}{5} = \frac{23}{5} = 4.6
\]

অতএব, \( P \) বিন্দুর স্থানাঙ্ক \( (4.4, 4.6) \)।


এইভাবে, কোনো রেখাংশকে নির্দিষ্ট অনুপাতে বিভক্তকারী বিন্দুর স্থানাঙ্ক নির্ণয় করা যায়।

Promotion